
Czech Technical University in Prague
Faculty of Electrical Engineering

6D Pose Estimation of Textureless
Objects from a Single Camera

Odhadování rotace a translace
netexturovaného objektu z jedné

kamery

BACHELOR THESIS

Author: Michal Lukeš
Supervisor: prof. Ing. Jiří Matas, Ph.D.
Department: Department of Cybernetics
Study programme: Open Informatics
Branch of study: Computer and Information Science
Year: 2021

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474572Personal ID number:Lukeš MichalStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

6D Pose Estimation of Textureless Objects from a Single Camera

Bachelor’s thesis title in Czech:

Odhadování rotace a translace netexturovaného objektu z jedné kamery

Guidelines:
1. Familiarize yourself with state-of-the-art approaches to 6D pose estimation [1].
2. Select a method suitable for textureless, shiny objects, such as EPOS [2]. A method with available implementation is
recommended, otherwise, implement it.
3. Create a small database of a few objects, obtain their 3D model and generate, if necessary, training images required
by the selected method.
4. Create a dataset of test views with known 6D ground truth information. Consider using a robotic arm, calibrated w.r.t.
the camera.
5. Evaluate the performance of the selected method, and analyse its failure modes.
6. (optionally) Propose improvements to the select method, and evaluate them.
7. (optionally) Implement a demo with a robotic system grasping and moving an object in the field of view of a calibrated
camera.

Bibliography / sources:
[1] BOP: Benchmark for 6D Object Pose Estimation - BOP Challenge 2020 on 6D Object Localization. ECCV Workshops
(2) 2020 : 577-594 (also available at http://cmp.felk.cvut.cz/home/)
[2] Tomáš Hodaň, Dániel Baráth, Jiří Matas - EPOS: Estimating 6D Pose of Objects with Symmetries C VPR 2020 :
11700-11709, 2020 (also available at http://cmp.felk.cvut.cz/epos/)

Name and workplace of bachelor’s thesis supervisor:

prof. Ing. Jiří Matas, Ph.D., Visual Recognition Group, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 13.08.2021Date of bachelor’s thesis assignment: 17.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
prof. Ing. Jiří Matas, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Author statement for undergraduate thesis:

I declare that the presented work was developed independently and that I have
listed all sources of information used within it in accordance with the methodi-
cal instructions for observing the ethical principles in the preparation of university
theses.

Prague, date 13.8.2021 ..
Michal Lukeš

Abstrakt: V této práci se věnuji vyhledávání objektů v prostoru na základě jediného
RGB snímku a to jak pozice na všech třech osách tak i rotace kolem každé z nich za
pomocí 3D modelů daných objektů. Uplatnění těchto metod je zejména v robotickém
uchopování, autonomním řízení, nebo augmentované realitě. Skvělým zdrojem pro
hledání vhodné metody je BOP Challenge [
1] , ve kterém jsou porovnávány nejlepší nové algoritmy na množině datasetů. Vy-
braný algoritmus pak budu přizpůsobovat a naučím jej na svém vlastním datasetu.
Současné nejlepší metody pro 6D detekci objektů používají kombinaci klasifikátorů -
například Cosypose [2] používá 3 různé neuronové sítě a EPOS [3] používá k predikci
6 kroků včetně vlastní neuronové sítě. Oba algoritmy mají dostupnou implementaci
a skvělé výsledky v BOP.
Pro ukázku funkčnosti si vyberu 4 objekty a jejich 3d modely a pomocí kamery
se pokusím vytvořit základní dataset. Dále ale pokračuji technikou renderování fo-
torealistických obrázků, která je kvůli automatickému anotování objektů ve všech
dimenzích mnohem rychlejší a praktičtější na velká množství dat nutná pro trénování
neuronové sítě.
Klíčová slova: 6D, odhad polohy, netexturované a lesklé předměty

Abstract: This thesis focuses on estimating the pose of objects based on only one
RGB image of the scene. This includes the position of the object on the three-axis as
well as its rotation using 3D models of the objects. Deployment of such methods is
mainly in robotic grasping, autonomous driving or augmented reality. An excellent
source for comparing these methods is the BOP Challenge [1], which is a competition
trying to find the best state of the art public method by comparing them on a list
of datasets. I will then adapt the chosen algorithm and train it on my dataset.
The current state of the art methods use a combination of classifiers. For example,
Cosypose [2] uses three neural networks, and EPOS [3] utilizes six steps for the
prediction, including a neural network. Both motioned algorithms have publicly
available implementation and excellent results in the BOP Challenge.
For proof of concept, I choose to use four objects with their respective 3D models,
and I try to create a training dataset using an RGB camera. Then I switch to the
photorealistic rendering of the training images, which is significantly faster and more
practical for the amount of training data a neural network requires. This is mainly
because it allows for automatic annotation of the objects in the 6D space.
Key words: 6D, Pose Estimation, textureless and reflective objects

Contents

List of Figures ix

1 Introduction 1
1.1 Non-learning-based approach . 1
1.2 Learning-based approaches . 2

1.2.1 Keypoint Approaches . 2
1.2.2 Holistic Approaches . 2

1.3 Note on depth-based approaches . 3
1.4 Challenges of 6D pose estimation . 3
1.5 6D localization or 6D detection . 4
1.6 The task . 4
1.7 Conclusions . 5

2 BOP Challenge 7
2.1 Error functions . 8
2.2 Datasets . 8
2.3 BOP Toolkit . 10

3 EPOS 11
3.1 How EPOS works . 11

3.1.1 Surface Fragments . 12
3.1.2 Prediction of 2D-3D Correspondences 12
3.1.3 6D Pose Fitting . 13

3.2 Installation . 13

4 Experiments 15
4.1 Creating synthetic training images . 16
4.2 The First experiment . 17
4.3 Improvements . 18

4.3.1 Increasing the resolution . 18
4.3.2 Rendering from a closer distance . 18
4.3.3 Other improvements . 19

4.4 Conclusions . 20

Conclusions 23
4.5 Other solutions . 23

Bibliography 25

viii

List of Figures

1.1 Photos of the provided objects . 5

2.1 Examples of the rendered images . 7
2.2 Examples from each of the eleven BOP datasets. The names of the

seven core datasets are underlined. Shown are RGB channels of sam-
ple test images which were darkened and overlaid with colored 3D
object models in the ground-truth 6D poses. 9

3.1 Visualisation of the EPOS pipeline 14

4.1 Screenshot from the 6D-PAT software showing the annotation process
on an example from the T-LESS dataset. While it allows for copying
the pose from a previous image, where there is usually only a minor
difference, the process is still very time consuming, even for tiny datasets 16

4.2 Examples from my first batch of renders from the BlenderProc4BOP
using my 3D models but the T-LESS parameters. Notice how little
of the area my objects take as they are sometimes barely visible . . . 16

4.3 A diagram showing the entire pipeline from taking the images to
finish. It starts with creating training and test datasets, either by
synthesising or taking real photos, then processing the datasets into
BOP format and finally using these to train or test the model. Di-
amonds represent source files, rectangles are scripts, and circles are
configuration files. If the script’s name is underlined, it means it has
additional parameters hardcoded in the source file and those that
are bold require additional parameters as arguments. I created this
diagram to help me keep track of all the possible configuration options 17

4.4 A grid put together by the inference script. It shows the input pic-
ture, the position of objects in the picture according to the labels, the
predicted poses, visualisation of the ground truth maps and the pre-
dicted labels. Before, the bottom left picture did not show any labels.
Thanks to the modifications, it now does, but still not well enough
as the objects are still too small. The methods still can not locate a
single object in the picture. 19

4.5 Photos of my rotating platform with 2 different backgrounds and a
photo taken using it. Later I have added markers from the ARToolK-
itPlus [45] library to get accurate position and intrinsic parameters of
my camera and removed the background vertical plane, as my camera
had a narrow field of view and it wasn’t visible anyway. This allowed
me to take full 360° photos . 20

ix

x List of Figures

4.6 One of the used training PBR images and on the right is its copy but
downscaled to 180x135 resolution to represent the methods ’vision’
based on the ground truth maps that use this resolution. Some parts
of the objects further from the camera are not even visible, even
though this is one of the best images I found in terms of the distance
of the objects to the virtual camera 21

4.7 Another example of the previous, this time with a background with
better contrast to the objects, but the objects are further from the
camera to better represent a more average picture. The objects take
fewer pixels and are hardly even noticeable on the downscaled picture 21

Chapter 1

Introduction

6D pose estimation, particularly using just one RGB image, is a computer vision
problem of estimating the pose of all known objects in an image with respect to
the camera, namely its position and rotation. In industrial developments, higher
demands make for new application scenarios. 6D pose estimation uses several kinds of
information to this problem. It obtains texture information, 3D model information,
and colour information to measure the 6D pose of objects. The approaches to the
6D pose estimation can be divided to two main categories: 1. Non-learning-based
approach, and 2. Learning-based approach.

1.1 Non-learning-based approach

This more traditional approach to the problem dates back to 1963 to [4]. The first
practical approaches relied on local image features or template matching and as-
sumed a grayscale or RGB input image. A common approach to the problem is es-
tablishing a set of 2D-3D correspondences between the input image and the object
model by selecting the correspondences using local image features, such as SIFT [5],
and estimating the pose by the PnP-RANSAC algorithm. This approach has demon-
strated robustness against occlusion and clutter in the case of objects with distinct
and non-repeatable shapes or textures. However, these methods tend to struggle
with symmetrical objects as the visible parts of such objects may have multiple fits
to the object model. Additionally, methods relying on local image features have a
poor performance on texture-less objects because the feature detectors often fail to
provide a sufficient number of reliable locations and the descriptors are no longer
discriminative enough.

1

2 Introduction

1.2 Learning-based approaches

Learning-based approaches usually use convolutional neural networks, regression
or other methods based on deep learning to train a model with training data to
then estimate the 6D pose. Recent machine learning-based algorithms have been
dominant over traditional ones. In BOP 2020, five methods have outperformed Vidal-
Sensors18 [6], a point pair features-based winner of the challenge from 2017 and
2019. But, there are multiple approaches, each with its pros and cons. One of the
first problems of CNN based problems was the performance on symmetrical objects.
For example, if the method were trained using the squared loss between the ground
truth poses and the predicted poses, it would predict the average of the possible
poses for an input image, which is often not a valid solution (for example a pipe
with the symmetry axis in the middle, would have two correct poses, but the estimate
would be perpendicular to them).

1.2.1 Keypoint Approaches

Keypoint-based approaches use two steps: 1. extract the 2D feature points in the
input image, and 2. regress the 6D pose results using a PnP algorithm. An example
of such an approach would be algorithm BB8 [7], which solved the problem presented
by textureless symmetrical objects by restricting the rotation angle; however, it had
a problem with occluded objects if it didn’t obtain the correct 3D bounding box.
PVNet [8] resolved this problem with occlusion by segmenting images into several
patches and using those to predict which object they belonged to and where the 2D
projections were. PrimA6D [9] further improved on this approach by replacing the
3D bounding boxes with learning orientation-induced primitives. Single-Stage 6D
[10] revealed that the typical two steps this approach takes are a weakness because
the loss function of the neural network cannot represent the accuracy of 6D pose
estimation. Therefore it presented a single-stage 6D pose estimation method that
could directly regress the 6D pose based on groups of 3D-to-2D correspondences
associated with each 3D object keypoint.

1.2.2 Holistic Approaches

Compared to approaches based on key points, holistic approaches are usually an
end-to-end architecture and faster. Examples are PoseNet [11], which utilises a 23
layer deep convolution neural network to estimate the 6D pose. SSD [12] which im-
proved accuracy by combining bounding box priors with the feature maps of different
spatial resolutions and SSD-6D [13], which extended it for 6D pose estimation and
allowed for easy training and handling of symmetries. Deep-6DPose [14] contributes
by decoupling pose parameters into translation and rotation so that the rotation
can be regressed via a Lie algebra representation.

1.3. Note on depth-based approaches 3

This method, however, had poor accuracy when measuring the 6D pose of small or
symmetrical objects. PoseCNN [15] introduced a novel loss function that enables
it to handle symmetric objects. The method handled well occlusion and symmetric
objects in cluttered scenes with RGB or RGB-D images as input.

1.3 Note on depth-based approaches

Many non-learning based methods are focused on just depth information. This is the
result of RGB based methods requiring complex algorithms to obtain precise results.
At the same time, the development of hardware allows for cheap and straightforward
3D scene information, such as depth cameras and 3D scanners. Compared with 2D
information, 3D information preserves the object’s original appearance, which is
more helpful in measuring the 6D pose [16]. Learning-based methods are usually
only RGB based or optionally use depth channel to increase accuracy [2, 17, 18].

1.4 Challenges of 6D pose estimation

As stated before, many methods have difficulty classifying symmetrical and texture-
less objects, but some have solved this.

The occlusion of a object can cause a method to miss it. Even more so if the occlusion
covers some texture which the algorithm may rely on. A common workaround is to
separate objects into multiple fragments using the information of visible parts to
predict the object’s pose, but usually, the more parts of an object that could be
seen, the more reliable the results obtained.

Another problem present very reflective objects, which are the most troublesome for
pure RGB methods as well approaches measuring depth information using sensors
that rely on light since the reflective property of such an object messes up the image.

Background clutter is also pose a challenge to 6D pose estimation methods. Because
the target is surrounded by so much useless information, it is difficult to measure the
6D pose directly. But almost in any practical scenario, there will always be clutter in
the background. While attempts using masks to cover background exist, like Mask
R-CNN [19], the more robust solution when using CNNs is adapting the training
dataset to cover for this. This is especially simple when rendering the images, eg.
using BlenderProc4BOP [20, 21].

The 6D pose estimation of deformable objects (for example clothes or plants) is a
huge challenge in the field because the posture of the objects is unpredictable, and
there are many ways for the objects to deform. Thus, many conditions need to be
taken into consideration, resulting in pressure on the algorithm and calculation.

4 Introduction

To create a dataset images of the objects are captured in different poses in different
views. The best matching in the dataset is found when measuring the pose of objects
[22].

1.5 6D localization or 6D detection

The difference lies in prior information about the object present in the input image
distinguishes two 6D object pose estimation tasks: 6D localization, where the identi-
fiers of present object instances are provided for each image, and 6D detection, where
no prior information is provided. 6D detection has computationally more expensive
evaluation as many more hypotheses regarding the type of the object need to be
evaluated, whereas 6D localization needs only to output the top N pose estimates
for an object class.

1.6 The task

The given task by the Rohde Schwarz závod Vimperk, s.r.o. is to examine the pos-
sible application of such a 6D pose estimation algorithm in an automated machine.
A robotic arm would assist this application to grab and move Semirigid RF cables.
These cables are small in size, textureless and often symmetrical. The company pro-
vided me with four examples and with their corresponding 3D models. However,
the final application would have to accommodate about 200 other similar objects.
These examples have modified dimensions from the ones used in manufacturing to
preserve the confidentiality of the company. They contain a wire in the middle, which
is encased by a white insulator further covered by a silver, metallic and somewhat
reflective cover, representing most of the objects’ surface. These will be delivered to
the machine in a black container containing a known amount of objects. The robot
will also know the kind of object in prior to the detection. The idea is to use only an
RGB camera to tell the robotic arm how to pick up one of the objects and then use
it. Since this operation would not be instant, the algorithm can re-evaluate the con-
tents of the box for the next pick up to accommodate for possible misplacement of
the remaining objects by the movement of the arm. The selected method should run
and learn (if it requires learning) on consumer-level hardware as the company pol-
icy forbids sending required (training) data to a 3rd party cloud computing service
without a Non-disclosure agreement.

1.7. Conclusions 5

1.7 Conclusions

An ideal method would be accurate, fast, robust, scalable and easy-to-train. How-
ever, not all deployments demand all of the above at the same time. For example,
a deployment in autonomous driving might not need a precise 6D position of some
background objects but will prefer speed. In comparison, a robotic grasping project
will need a high degree of accuracy to be able to hit the target but might not require
an instantaneous result if the robot needs to wait for another part anyway.

Figure 1.1: Photos of the provided objects

Chapter 2

BOP Challenge

The BOP Challenge 2020 is the third in a series of public challenges in the BOP
project. The goal of BOP is to continuously report state of the art in 6D object pose
estimation. The first challenge was organized in 2017 [23]. The second one from
2019 [24] and the third from 2020 [1] share the same evaluation methodology and
leaderboard.

For the BOP Challenge 2020, 50K photorealistic training images for each of the seven
core datasets are provided. The images were rendered by BlenderProc4BOP [21], an
open-source and lightweight physically-based renderer (PBR) prepared for the BOP
Challenge 2020. The objects were rendered inside a cube with randomized surface
materials from the CC0 Textures library. This makes the rendering noticeably faster
than rendering a complete indoor scene and still allows for great generalization of
the background by the neural networks.

BOP allows for an unbiased comparison of publicly available methods. The table at
https://bop.felk.cvut.cz/leaderboards/ provides sorting by performance on
each of the datasets as well as per-dataset average called the Core, the average time
the method took to estimate poses for all objects in an image, the kind of test
image - either RGB, RGB-D or D, and the method’s name and date of evaluation.
The average time mentioned should not be used to sort the methods alone, as the
hardware was not standardized, and every contestant had access to different levels
of hardware performance. Even though the challenge has already been concluded,
the submission form is still open and should one choose to publicize their results,
the system will add them to the leaderboard.

Figure 2.1: Examples of the rendered images

7

https://bop.felk.cvut.cz/leaderboards/

8 Chapter 2. BOP Challenge

The BOP 2020 was focused on training the methods on only synthetic images be-
cause capturing and annotating real training images requires a significant effort.
Therefore, the challenge focuses primarily on the more practical scenario where only
the object models, that can be used to render synthetic training images, are available
at training time. These 3D object models are often available or can be generated at
a low cost using KinectFusion-like systems for 3D surface reconstruction.

2.1 Error functions

To evaluate performance, BOP uses three pose-error functions - MSSD (Maximum
Symmetry-Aware Surface Distance), MSPD (Maximum Symmetry-Aware Projec-
tion Distance) and VSD (Visible Surface Discrepancy). This is because each has its
disadvantages and its preferred use case. Both the performance according to each
pose-error function and their average are published so everyone can find the best-
suited method for a given use case. MSSD is suitable for robotic grasping and MSPD
for augmented reality applications. However, because both are calculated over the
entire model surface, misalignments of invisible parts are penalized. This may not
be desirable for applications such as robotic manipulation with suction cups where
only the alignment of the visible part is relevant. VSD is calculated only over the
visible object part. It evaluates the alignment of the object shape but not of its
colour.

2.2 Datasets

For the training to be effective, the training set needs to exhibit similar charac-
teristics to the target application while maintaining enough variation to prevent
overfitting. BOP 2020 features eleven datasets, but only seven of them were selected
as core datasets. Each is available in a unified format and includes 3D object mod-
els and training and test RGB-D images annotated with ground-truth 6D object
poses. The seven core datasets further include photorealistic training images. The
test images were captured in scenes with graded complexity, often with clutter and
occlusion. All test images are real captured scenes. It is also required that at least
10% of the projected surface area of each object is visible.

Linemod [25] or LM features 15 texture-less 3d objects in heavily cluttered scenes,
but with little occlusion.

Linemod-Occluded [26] or LM-O provides additional ground-truth annotations for
all modelled objects in one of the test sets from LM with various levels of occlusion.
Because this dataset features the same objects as LM, the PBR-BlenderProc4BOP
training images are identical.

2.2. Datasets 9

T-LESS [27] features 30 industrial objects with no significant texture or discrimina-
tive color. The objects exhibit symmetries and mutual similarities in shape and/or
size and a couple of objects are a composition of other objects.

ITODD [28] 28 objects captured in realistic industrial setups with only a Gray-D
sensor. If we were ranking the datasets instead of the methods in BOP, this would be
the worst-performing one, thus the hardest for the methods. It has the lowest average
score across the board. Methods using depth channel tend to perform significantly
better on this dataset as its missing RGB information.

HomebrewedDB [29] or HB has 33 objects (toys, household items and industrial
objects) in scenes with varying complexity.

YCB-Video [30] or YCB-V includes 21 items such as food boxes and other house-
hold items. They vary in shapes, sizes, textures, weight and rigidity.

RU-APC [31] is a dataset focused on warehouse pick-and-place applications. It
features 14 textured products in images on a cluttered warehouse shelf.

IC-BIN [32] only includes 2 objects, but they appear in multiple locations with
heavy occlusion. The objects appear many times in a scene. This dataset is focused
on a bin-picking scenario.

Figure 2.2: Examples from each of the eleven BOP datasets. The names of the seven
core datasets are underlined. Shown are RGB channels of sample test images which were
darkened and overlaid with colored 3D object models in the ground-truth 6D poses.

LM LM-O T-LESS ITODD

HB YCB-V RU-APC IC-BIN

IC-MI TUD-L TYO-L

10 Chapter 2. BOP Challenge

IC-MI [33] features 6 household objects - Two texture-less and four textured.

TUD-L [24] shows three objects under different lightning conditions.

TYO-L [24] has 21 objects captured on a table with four different table cloths and
five different lighting conditions.

2.3 BOP Toolkit

The BOP Challenge also provides BOP Toolkit [34], an open-source Python library
for 6D object pose estimation. It implements the evaluation of the pose estimates,
rendering of the images, visualization of 6D object poses, i/o operations for the
datasets, error functions and calculation of parameters required for the BOP format.

Table 2.1: The leaderboard from BOP Challenge 2020, only RGB methods

Position Method Test image ARCore
3 CosyPose-ECCV20-SYNT+REAL-1VIEW RGB 0.637
5 CosyPose-ECCV20-PBR-1VIEW RGB 0.570

10 CDPNv2_BOP20 (RGB-only) RGB 0.529
13 CDPN_BOP19 (RGB-only) RGB 0.479
14 CDPNv2_BOP20 (PBR-only & RGB-only) RGB 0.472
15 leaping from 2D to 6D RGB 0.471
16 EPOS-BOP20-PBR RGB 0.457
20 Zhigang-CDPN-ICCV19 RGB 0.353
22 Pix2Pose-BOP20-ICCV19 RGB 0.342
23 Sundermeyer-IJCV19 RGB 0.270
24 SingleMultiPathEncoder-CVPR20 RGB 0.241
25 DPOD (synthetic) RGB 0.161

Chapter 3

EPOS

EPOS [3] is the method I selected for my task. Upon its release on April 2020 it
has outperformed all RGB methods in BOP 2019 [24] on all three datasets used
at the time (T-LESS [27], LM-O [26] and YCB-V [30]). Later, in September 2020
in BOP 2020 [1] it was outperformed by the CosyPose [2], CDPN [18] and leaping
from 2D to 6D [35] methods. I have chosen EPOS primarily because of the offer
of consultations from Tomáš Hodaň, who proposed the method and assisted me in
this work. Compared CosyPose, EPOS is also easier to train, as CosyPose used 32
NVIDIA V100 GPUs to train their model for the competition, and I have nowhere
close to that amount of performance available. CDPNs model has been trained on
an NVIDIA GTX 1070 GPU, but this method teaches one model for each object.
This is an approach I would prefer not to use as it would mean having to train
and store a large number of models, though it might yield better performance since
my in my case, I know for which object the method is looking. Leaping from 2D
to 6D uses both the approach of training one model for each object and powerful
processing power in the form of the Tesla P40 GPU.

3.1 How EPOS works

Understanding how a method works can reveal its weak and strong points and help
understand various problems that might come up during its deployment.

The 3D object models are the only necessary training input of this method. How-
ever, to improve the performance beyond this very basic level, training images are
required.

11

12 Chapter 3. EPOS

3.1.1 Surface Fragments

Since EPOS represents all objects in surface fragments (which is how it handles
occluded objects, as explained in 1.4), the very first step is to split every object
into N fragments, where N is the number of fragments. The furthest point sampling
algorithm finds the fragment centres by iteratively selecting a vertex from the set
of all the vertices given by the 3D model most distant from the already chosen
vertices. The algorithm starts with the centroid of the object model, which is then
discarded from the final set of centres. The team behind EPOS performed an exper-
iment to find out the optimal amount of fragments. They tried 1, 4, 16, 64 and 256
fragments. The performance increased with the number of fragments. Unfortunately,
the experiment didn’t include tries with more than 256 fragments to see whether the
performance improved. The reason for this might be that more fragments require
significantly more memory to be available. Also, on T-LESS, the accuracy drops
when the number of fragments increases from 64 to 256. So the ideal number of
fragments can vary for every dataset. The theory is that because T-LESS includes
small objects, the higher amount of fragments causes them to be too small. The
network then doesn’t have enough training examples for every fragment, and the
accuracy decreases. This theory, unfortunately, didn’t get tested as it would require
creating whole new datasets with tiny and big objects.

3.1.2 Prediction of 2D-3D Correspondences

To correctly predict position in 3D space from a 2D RGB image, the method first
needs a probability of an object’s surface fragment being visible at a given pixel.
But the method actually predicts two probabilities - one for the chance that an
object is visible in the given pixel and the second for every fragment of that object
being visible. This approach overcomes both the problem of occlusion and symmetry,
both of which would cause the combined chance to be close to zero as the following
applies:

Pr(𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡, 𝑜𝑏𝑗𝑒𝑐𝑡|𝑝𝑖𝑥𝑒𝑙) = Pr(𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡|𝑜𝑏𝑗𝑒𝑐𝑡, 𝑝𝑖𝑥𝑒𝑙) Pr(𝑜𝑏𝑗𝑒𝑐𝑡|𝑝𝑖𝑥𝑒𝑙)

With this approach, a pixel containing an occluded object will keep its probability
of containing a specific fragment high. In the case of symmetry, the pixel retains
a high chance of containing the object, but the network should split the chance of
seeing a specific fragment between all the symmetrical ones.

Next, each surface fragment has a regressor, which predicts the fragments 3D lo-
cation at the given pixel. This, combined with the prior probabilities, shows the
position of an object in 3D space. For all of these predictions, DeepLabv3+ [36] is
used, a deep convolutional neural network with an encoder-decoder structure. For m
objects, each represented by n surface fragments, the network has 3mn+mn+m+1
output channels (3mn represents the three 3D coordinates of m times n fragments,
one mn for their probabilities and the m+1 for the probability of m objects and the
one background class).

3.2. Installation 13

This network is trained by minimising a loss function designed to increase accuracy
on images annotated with ground-truth 6D object poses. Pixels outside the visibility
masks of the objects are considered to be the background. The network is provided
with only a single corresponding fragment per pixel during training to learn the
object symmetries. This replaces the need to identify the visible object parts in each
training image and find their fits to the object models.

The pixels the network thinks represent an object are linked with a 3D location
on its fragments if the chance exceeds a given threshold. The threshold is relative
to the maximum sum of collected locations from all indistinguishable fragments
expected to have a similarly high probability. For example, if the object is a sphere,
all fragments will be the same and have the same chance (1/number of fragments).
This creates a set of correspondences for each instance of an object containing values
determining the pixel, its 3D location, and the prediction’s confidence. That means
every pixel will have zero or more possible matches resulting in a many-to-many
relationship between the 2D image locations and the predicted 3D locations.

3.1.3 6D Pose Fitting

Now the method has sets of possibly multiple object locations for each object in-
stance, but not more than one can be correct. An efficient variant of PnP-RANSAC
[37] algorithm is used to reduce their number. Individual pose hypotheses are pro-
posed sequentially and added to a set of maintained hypotheses. Next the quality
of the proposition is calculated. The pose is estimated from a sampled triplet of
correspondences by the P3P solver [38], and refined from all inliers by the EPnP
solver [39] followed by the Levenberg-Marquardt optimization [40]. If the triplets
have collinear 3D locations, they are rejected. The triplets are sampled by PROSAC
algorithm [41], which first focuses on correspondences with high confidence and
progressively blends to uniform sampling. At each pixel, only the highest quality
proposition is considered as only up to one correspondence may be compatible with
the hypothesis and the rest only provides alternative explanations. If the pose hy-
potheses are behind the camera or if the determinant of the rotation matrix is equal
to -1, they are discarded. This process repeats until the quality of the new proposi-
tion reaches a set threshold, or the number of iterations does. Then the hypothesis
with the highest quality is integrated into the set of maintained hypotheses and the
process repeats again for the next hypothesis, until there are none left.

3.2 Installation

The entire source code in Python is available from github with instructions on how to
install it. Compared to other methods like CosyPose, this process is relatively com-
plicated as the method requires numerous packages and other external repositories
to function.

https://github.com/thodan/epos

14 Chapter 3. EPOS

Figure 3.1: Visualisation of the EPOS pipeline

The installation manual mentions a list of libraries and how to install them using
the Conda package manager. However, these do not suffice. At least in my case with
the latest default installer it did not include several other required packages. Some
of them are mentioned as missing in the error codes when running the scripts,
but others were quite tricky to find out without previous knowledge about the
code. It would be great for anyone in the future who tries to deploy EPOS to
have these listed in the manual. I have completed this list of missing dependencies
and how to install them and consider it one of the improvements to EPOS in 4.3.3
Next, the manual requires creating environmental variables for paths in the file
system by creating a env_vars.sh file in the conda directory (this creates one of the
many configuration files EPOS uses). Next, the external dependencies need to be
installed - the BOP renderer [42] and Progressive-X [43]. This is where many of the
dependencies mentioned before are missing. The other two external dependencies
don’t require installation. The first is an older version of the TensorFlow-Slim image
classification model library [44] and second is the BOP Toolkit [34].

Then it was only a matter of downloading one of the BOP datasets to verify I com-
pleted the installation successfully. Creating a list of images using create_example_list.py
from the scripts folder and then using create_tfrecord.py to prepare the listed images
into a format the method will understand. Next, either download one of the avail-
able pre-trained models or train one, and if it performs as expected, the process was
successful. This straightforward process is allowed by having parameters for these
datasets prepared and hardcoded in the files.

Chapter 4

Experiments

The next step would be to create a dataset for my objects and test the performance
of the selected method. I started the way that seemed the most straightforward - I
built my own primitive rotating platform to capture the objects from multiple angles.
I then used a 6D Pose Annotation Tool from https://github.com/florianblume/
6d-pat to annotate taken images. I have created a minimal dataset of forty real
images, which means I took a photo approximately at every nine degrees of rotation
around the whole circle at uniform elevation. Then I quickly started searching for a
way to use rendering, given how long such a small dataset took to make.

While I had an industrial robotic arm at my disposal, I chose not to use it to capture
the photos. While it would have been theoretically possible to calibrate the arm and
the camera to annotate the images, I did not find any existing implementation of
this approach. I experimented with implementing one myself, but this has proven
to be far too ambitious as it would require knowledge of both the robotic arm
programming and the camera software. This said, if such a method existed and were
publicly available, it would allow for creating great datasets for training and testing
6D pose methods. It would be possible to annotate all photos taken from many
various angles and distances while only annotating one scene by hand. This level of
automation in creating datasets could be bigger for the industry than the PBR as
it would be able to create real data using a bit more human effort and resources
compared to PBR (as an industrial robotic arm is more expensive than a computer
powerful enough to run Blender).

In the beginning, I was using a Dell workstation with an NVIDIA Quadro P2200 with
5 GB of VRAM and a fresh Ubuntu 20.04.2.0 LTS installation. Because of the lack of
VRAM on this card for training, I had to switch to a dual processor Dell PowerEdge
with four Quadro P4000 cards with 8 GB of VRAM. These cards provided enough
VRAM for the training to run, but the TensorFlow model still didn’t fit all the
optional variables into it, but it fit the necessary ones so the training worked. If
more VRAM were available, it might have computed faster.

15

https://github.com/florianblume/6d-pat
https://github.com/florianblume/6d-pat

16 Chapter 4. Experiments

Figure 4.1: Screenshot from the 6D-PAT software showing the annotation process on
an example from the T-LESS dataset. While it allows for copying the pose from a pre-
vious image, where there is usually only a minor difference, the process is still very time
consuming, even for tiny datasets

.

4.1 Creating synthetic training images

At first, I used the provided tools in the BOP Toolkit [34] that installed together with
EPOS [3] using the script render_train_imgs.py. Images generated by this script
didn’t look nearly as realistic as the images from BOP, as this script is probably just
a leftover from before implementing BlenderProc4BOP [21]. BlenderProc4BOP is
an example of using BlenderProc [20], which itself is a procedural Blender pipeline
for photorealistic training image generation. Blender is a free and open-source 3D
computer graphics software tool set used for creating animated films, visual effects,
art, 3D printed models, motion graphics, interactive 3D applications, virtual reality,
and computer games. For the rendering, I used the default parameters used for the
T-LESS dataset configured by the BOP team.

Figure 4.2: Examples from my first batch of renders from the BlenderProc4BOP using
my 3D models but the T-LESS parameters. Notice how little of the area my objects take
as they are sometimes barely visible

4.2. The First experiment 17

4.2 The First experiment

The scene was set up to create a box with each side long 2 metres, and give all the
walls a randomly sampled texture from the CC0 Textures library for generalisation.
Then add a light source and drop one of each object on the ground with a physics
simulation. As the process seemed to work well, I had more renders made and decided
that 50 thousand, like in the BOP Challenge, should suffice. Then the files generated
needed to be processed with calc_gt_masks.py and calc_gt_info.py from the BOP
Toolkit to have the correct BOP format that EPOS understands. Next, I needed to
create a list from them using the create_example_list.py and finally convert them
to TFRecord with create_tfrecord.py.

The training script wasn’t working for me at first. It was returning errors whenever
I tried running it - I managed to resolve this by deleting the old checkpoint file from
the pre-trained model folder. When the training eventually ran, it soon reached the
point where the loss function reported Not a Number (NaN). I managed to create a
workaround solution to this by reducing the value of parameter base_learning_rate
to a tenth of its original value. While that meant that the model might take longer
to learn to the same amount as with the original value, it did not get stuck at NaN
anymore.

After about one million training steps (a number recommended by Tomáš Hodaň), I
tried running the inference script. This script computes the estimated 6D pose from
another dataset for testing to evaluate a trained model. This one is able to even
visualise the results. I used it with a thousand other rendered test images to get
the first results, but the method didn’t recognise a single object. This was a major
obstacle as I didn’t know what could have caused such a result.

Figure 4.3: A diagram showing the entire pipeline from taking the images to finish. It
starts with creating training and test datasets, either by synthesising or taking real photos,
then processing the datasets into BOP format and finally using these to train or test the
model. Diamonds represent source files, rectangles are scripts, and circles are configuration
files. If the script’s name is underlined, it means it has additional parameters hardcoded
in the source file and those that are bold require additional parameters as arguments. I
created this diagram to help me keep track of all the possible configuration options

BlenderProc4BOP

Pose Annotation ToolPhotos

3D models

config.yaml dataset_params

training
images

test images

calc_gt_masks.py calc_gt_info.py create_example_list.py

create_tfrecord.pyinfer.py

train.py
params.yaml

18 Chapter 4. Experiments

Tomáš Hodaň, fortunately, knew a possible reason - the ground truth maps the
network uses for learning are represented only in one-fourth of the original resolution
to the model. Ground truth maps are images that only show the shape of the objects,
one map for every object in the image they represent. They are created by rendering
the 6D position of objects from the training dataset. Given how small my objects
appear in the images and their resolution of 720x540 meant that the neural network
might not have seen any objects at all. Possible solutions for this problem: Render
the images in higher resolution or get the BlenderProc4BOP to render the images
from less distance from the objects.

4.3 Improvements

Since the method still did not work, I needed to improve the rendering process by
configuring the config.yaml file. However, this has proven to be very difficult as
the way it stores information is not very user-friendly to configure. It also lacks
good documentation, instead recommending trying to use working examples from
the creators and other users.

4.3.1 Increasing the resolution

First, I tried to increase the resolution - the renderer actually takes this setting
from the dataset_params file from the BOP Toolkit, so I did not have to use the
config.yaml. The first resolution I tried was 1920x1080, understandably the rendering
took longer, but now the object took a lot more pixels in the image. The training,
however, did not work. At first, I thought the images might now be too large for
the model and my available VRAM. I tried gradually lowering the resolution, but it
still did not work even when I eventually got to a resolution lower than the original
720x540. The problem must have been somewhere else. I then went through all the
configuration settings I was able to find, but I just could not fix the issue.

4.3.2 Rendering from a closer distance

The other way to increase the number of pixels my objects take in a picture, without
changing the image’s resolution, would be to put the point in space from which
the BlenderProc4BOP renders the image (a virtual camera) closer to the objects,
or vice versa. This setting is unfortunately located in the mentioned config.yaml
file. BlenderProc4BOP positions these virtual cameras by randomly sampling them
around a central point using the CameraSampler module. I set it up to create 10
random poses for the cameras around the centre in diameter of 0,1 to 0,25 units.
The camera’s rotation should be to look directly at one of the objects with enabled
physics (that is only the objects).

4.3. Improvements 19

Even though it does not seem to aim the camera at any object directly, it manages
to capture some of them well enough. I also allowed for some tilt (random rotation
around the axis aimed at the object). In the end, the inference script showed that
the model saw the objects even at one-fourth of the resolution. However, because my
models are really small in diameter, it still only represented them as a few scattered
groups of pixels where the line of pixels was the thickest.

Figure 4.4: A grid put together by the inference script. It shows the input picture, the
position of objects in the picture according to the labels, the predicted poses, visualisation
of the ground truth maps and the predicted labels. Before, the bottom left picture did not
show any labels. Thanks to the modifications, it now does, but still not well enough as the
objects are still too small. The methods still can not locate a single object in the picture.

4.3.3 Other improvements

During the time it took to evaluate the previous improvements and thanks to the
many examples of the config.yaml file I went through, I managed to put together
some other improvements to the whole process.

In the beginning, my hardware suffered from random unexpected restarts (I later
diagnosed this to be because of a faulty ram stick). This was especially unfortunate
to happen while running one of the more time-demanding scripts over the weekend,
and those were mainly the calc_gt_masks.py and the calc_gt_info.py scripts. These
two mentioned scripts took around six days to process a larger dataset, and when
they restarted, they would start again from the beginning of the dataset, rewriting
all the previous progress. This motivated me to implement a simple logic to detect
and skip the already processed parts of the dataset.

While monitoring the performance, I noticed that these two scripts used about half of
the systems CPU threads at once each. Because their execution order did not matter,
I managed to completely parallelize them, running them both simultaneously using
all the systems resources. This improvement meant that I could have both parts
computed in about 60% of the time they took when performed serially. Even more
performance could be gained if they would use the GPUs.

20 Chapter 4. Experiments

Since I was executing the entire circle of testing different datasets regularly, I thought
of automating it. Piece by piece, I put together a bash script that would execute
all the scripts independently on me and allow me to save the time wasted between
completing one part and manually starting the next. It also allowed me to manage
the configuration options of the process better. I also used this script to change which
objects and how many of them were rendered. I modified the BlenderProc4BOP run
file to accept the kind and amount of objects it put in the scene. This meant I could
choose to render an image containing just one kind the object and how many times
it appeared. This would allow the neural network to adapt to my scenario where
there is always a known amount of one known object. I chose not to use black walls
instead of the randomized surface material, which would also fit the deployment,
but the generalisation of the background was something I wanted to keep for use
on my existing annotated real dataset. Instead, I made the dimensions of the box
smaller, only one unit, which is as little as I was able to since the configuration does
not accept floats as parameters. I also implemented logging using discord.sh to keep
track of the training while I was not connected to the server using bash, webhooks
and Discord.

Figure 4.5: Photos of my rotating platform with 2 different backgrounds and a photo
taken using it. Later I have added markers from the ARToolKitPlus [45] library to get
accurate position and intrinsic parameters of my camera and removed the background
vertical plane, as my camera had a narrow field of view and it wasn’t visible anyway. This
allowed me to take full 360° photos

4.4 Conclusions

Even though I implemented numerous improvements, I was not able to achieve a
result. Visualisation on other PBR images showed that the method did not even clas-
sify a single object, thus getting a 0.000 AR score on the test dataset. Even though
the ground-truth maps eventually have shown the network parts of the objects, as
4.4 shows in its bottom-left part, it would only see the thickest parts of objects and
learn to classify the rest as background. While my improvements to accuracy and us-
ability were great for working on the method and possibly its eventual deployment,
I think my approach failed because I could not increase the resolution. Given how
small are my objects in diameter, it is tough to represent them in 180x135 resolution
(one-fourth of 720x540, the resolution of the ground truth maps) in a representative
shape using the BlenderProc4BOP without increasing the resolution.

https://github.com/ChaoticWeg/discord.sh
https://discord.com/

4.4. Conclusions 21

Even if I managed to fix this issue, I do not expect great performance due to the
nature of my objects. Given how similar they are to the objects used in the ITODD
dataset, which is already the most difficult dataset to be included in the BOP
Challenge with some of the methods achieving not even a 0.1 of AR score and even
very challenging to the best of the overall RGB methods, like CosyPose, I would
expect a poor performance even from them.

Unfortunately, my improvements have not been added to the public GitHub imple-
mentation of EPOS. The first reason is I have lost contact with Tomáš Hodaň, who
proposed the method and implemented it, and because the method has already been
beaten in performance by other methods. With the speed this field of research is
moving forward, the improvements to EPOS are already not very relevant.

Figure 4.6: One of the used training PBR images and on the right is its copy but
downscaled to 180x135 resolution to represent the methods ’vision’ based on the ground
truth maps that use this resolution. Some parts of the objects further from the camera
are not even visible, even though this is one of the best images I found in terms of the
distance of the objects to the virtual camera

.

Figure 4.7: Another example of the previous, this time with a background with better
contrast to the objects, but the objects are further from the camera to better represent a
more average picture. The objects take fewer pixels and are hardly even noticeable on the
downscaled picture

Conclusions

In this thesis, I have taken on the problem of 6D pose estimation on a couple of very
challenging objects. I have started by introducing the problem, along with histori-
cal approaches and their various implementations. Then I mentioned the numerous
challenges these implementations have to face. I followed by introducing the BOP
Challenge, where I compared the current state of the art methods and the datasets
they use because I would have to create one myself. The next part was focused on
the chosen EPOS method, why I chose to use it, and a brief explanation of how it
works and of the installation process. When I did that, I explained my first exper-
iment with the method on my objects. At first, I had to create a training dataset,
real or PBR to train the model and evaluate the network’s performance. I presented
the problems I encountered as well as my solutions to them. While working on these
solutions, I implemented various other improvements, some to the general usage and
others to the expected performance of my deployment. In the end, I explained why
my approach did not work.

4.5 Other solutions

Since my approach did not work, I would like to offer some other solutions using the
information I collected while working on this thesis.

One of these possible solutions would be to use a better performing method. I would
expect the best performance by the multi-view variant of the CosyPose method.
While the single pose variant alone managed to beat EPOS, I explained why I chose
not to use it in chapter 3. From my brief experiment with it, it was straightforward
to install compared to EPOS as it only uses Python and Yann Labbé et al., who
implemented it, managed to automate the process well. For the best performance of
this method, certain restrictions would have to be elevated. First, I mentioned that
this method could use multiple views of the same pose to increase accuracy. This
would contradict the requirement only to use a single RGB camera. However, since
said approach did not work, it should be considered as one of the possible options.
Using RGB-D cameras would also be especially beneficial because the methods using
the depth channel have had generally better performance on the ITODD dataset,
which contains the most similar objects to mine, compared to pure RGB methods.

23

24 Conclusions

We could achieve even better results if we combined these two proposals. While
these solutions would cost more than a single RGB camera, I would expect a great
improvement in the performance.

An approach less in dispute with the original assignment would be to use the method
introduced by Drost et al. [28]. The benefits of this approach would be a better
performance as this is the best performing of all methods on the ITODD dataset
and no required training as this method is actually based on point pair features
instead of a neural network. This method is even implemented in the HALCON
library, which is already commonly used in the company. The disadvantage and the
reason why this method was not included in 2.1 is its requirement of RGB-D data,
which is again a contradiction of the original assignment, but a reasonable one, due
to the possible increase in performance.

Other possible improvements could be gained by collaborating with the someone
from the team which proposed the method and modifying it to this specific use - for
the BOP Challenge, participants were required to capture poses of all the objects,
however since the robotic arm can only handle one object at a time, the method
only needs to return the pose of the object it is most confident in. Performance
could also be gained by applying texture to the objects. However, this would add
a manufacturing step and might not be acceptable due to the application of the
objects - for example, if they are visible on the finished product.

https://www.mvtec.com/products/halcon

Bibliography

1. HODAN, Tomas; SUNDERMEYER, Martin; DROST, Bertram; LABBÉ, Yann;
BRACHMANN, Eric; MICHEL, Frank; ROTHER, Carsten; MATAS, Jiri. BOP
Challenge 2020 on 6D Object Localization. CoRR. 2020, roč. abs/2009.07378.
Available from arXiv: 2009.07378.

2. LABBÉ, Yann; CARPENTIER, Justin; AUBRY, Mathieu; SIVIC, Josef. Co-
syPose: Consistent multi-view multi-object 6D pose estimation. CoRR. 2020,
roč. abs/2008.08465. Available from arXiv: 2008.08465.

3. HODAN, Tomas; BARATH, Daniel; MATAS, Jiri. EPOS: Estimating 6D Pose
of Objects with Symmetries. CoRR. 2020, roč. abs/2004.00605. Available from
arXiv: 2004.00605.

4. ROBERTS, Lawrence. Machine Perception of Three-Dimensional Solids. 1963.
isbn 0-8240-4427-4.

5. LOWE, D.G. Object recognition from local scale-invariant features. In: Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision.
1999, sv. 2, 1150–1157 vol.2. Available from doi: 10.1109/ICCV.1999.790410.

6. VIDAL, Joel; LIN, Chyi-Yeu; LLADÓ, Xavier; MARTÍ, Robert. A Method for
6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on
Range Data. Sensors. 2018, roč. 18, č. 8. issn 1424-8220. Available from doi:
10.3390/s18082678.

7. RAD, Mahdi; LEPETIT, Vincent. BB8: A Scalable, Accurate, Robust to Par-
tial Occlusion Method for Predicting the 3D Poses of Challenging Objects
without Using Depth. CoRR. 2017, roč. abs/1703.10896. Available from arXiv:
1703.10896.

8. PENG, Sida; LIU, Yuan; HUANG, Qixing; BAO, Hujun; ZHOU, Xiaowei.
PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation. CoRR. 2018,
roč. abs/1812.11788. Available from arXiv: 1812.11788.

9. JEON, MyungHwan; KIM, Ayoung. PrimA6D: Rotational Primitive Recon-
struction for Enhanced and Robust 6D Pose Estimation. CoRR. 2020, roč. abs/2006.07789.
Available from arXiv: 2006.07789.

10. HU, Yinlin; FUA, Pascal; WANG, Wei; SALZMANN, Mathieu. Single-Stage
6D Object Pose Estimation. CoRR. 2019, roč. abs/1911.08324. Available from
arXiv: 1911.08324.

25

https://arxiv.org/abs/2009.07378
https://arxiv.org/abs/2008.08465
https://arxiv.org/abs/2004.00605
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.3390/s18082678
https://arxiv.org/abs/1703.10896
https://arxiv.org/abs/1812.11788
https://arxiv.org/abs/2006.07789
https://arxiv.org/abs/1911.08324

26 Bibliography

11. KENDALL, Alex; GRIMES, Matthew; CIPOLLA, Roberto. Convolutional ne-
tworks for real-time 6-DOF camera relocalization. CoRR. 2015, roč. abs/1505.07427.
Available from arXiv: 1505.07427.

12. LIU, Wei; ANGUELOV, Dragomir; ERHAN, Dumitru; SZEGEDY, Christian;
REED, Scott E.; FU, Cheng-Yang; BERG, Alexander C. SSD: Single Shot
MultiBox Detector. CoRR. 2015, roč. abs/1512.02325. Available from arXiv:
1512.02325.

13. KEHL, Wadim; MANHARDT, Fabian; TOMBARI, Federico; ILIC, Slobodan;
NAVAB, Nassir. SSD-6D: Making RGB-based 3D detection and 6D pose esti-
mation great again. CoRR. 2017, roč. abs/1711.10006. Available from arXiv:
1711.10006.

14. DO, Thanh-Toan; CAI, Ming; PHAM, Trung; REID, Ian D. Deep-6DPose: Re-
covering 6D Object Pose from a Single RGB Image. CoRR. 2018, roč. abs/1802.10367.
Available from arXiv: 1802.10367.

15. XIANG, Yu; SCHMIDT, Tanner; NARAYANAN, Venkatraman; FOX, Dieter.
PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation
in Cluttered Scenes. CoRR. 2017, roč. abs/1711.00199. Available from arXiv:
1711.00199.

16. ZHANG, Zihao; HU, Lei; DENG, Xiaoming; XIA, Shihong. Weakly Supervised
Adversarial Learning for 3D Human Pose Estimation from Point Clouds. IEEE
Transactions on Visualization and Computer Graphics. 2020, roč. 26, č. 5,
pp. 1851–1859. Available from doi: 10.1109/TVCG.2020.2973076.

17. PARK, Kiru; PATTEN, Timothy; VINCZE, Markus. Pix2Pose: Pixel-Wise Co-
ordinate Regression of Objects for 6D Pose Estimation. CoRR. 2019, roč. abs/1908.07433.
Available from arXiv: 1908.07433.

18. LI, Zhigang; WANG, Gu; JI, Xiangyang. CDPN: Coordinates-Based Disentan-
gled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation.
In: Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV). 2019.

19. HE, Kaiming; GKIOXARI, Georgia; DOLLÁR, Piotr; GIRSHICK, Ross B.
Mask R-CNN. CoRR. 2017, roč. abs/1703.06870. Available from arXiv: 1703.
06870.

20. DENNINGER, Maximilian; SUNDERMEYER, Martin; WINKELBAUER, Do-
minik; ZIDAN, Youssef; OLEFIR, Dmitry; ELBADRAWY, Mohamad; LODHI,
Ahsan; KATAM, Harinandan. BlenderProc. CoRR. 2019, roč. abs/1911.01911.
Available from arXiv: 1911.01911.

21. HODAN, Tomas; VINEET, Vibhav; GAL, Ran; SHALEV, Emanuel; HAN-
ZELKA, Jon; CONNELL, Treb; URBINA, Pedro; SINHA, Sudipta N.; GU-
ENTER, Brian. Photorealistic Image Synthesis for Object Instance Detection.
CoRR. 2019, roč. abs/1902.03334. Available from arXiv: 1902.03334.

https://arxiv.org/abs/1505.07427
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1711.10006
https://arxiv.org/abs/1802.10367
https://arxiv.org/abs/1711.00199
https://doi.org/10.1109/TVCG.2020.2973076
https://arxiv.org/abs/1908.07433
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1911.01911
https://arxiv.org/abs/1902.03334

Bibliography 27

22. CAPORALI, Alessio; PALLI, Gianluca. Pointcloud-based Identification of Op-
timal Grasping Poses for Cloth-like Deformable Objects. In: 2020 25th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA). 2020, sv. 1, pp. 581–586. Available from doi: 10.1109/ETFA46521.
2020.9211879.

23. HODAN, Tomas; MICHEL, Frank; BRACHMANN, Eric; KEHL, Wadim; BUCH,
Anders Glent; KRAFT, Dirk; DROST, Bertram; VIDAL, Joel; IHRKE, Ste-
phan; ZABULIS, Xenophon; SAHIN, Caner; MANHARDT, Fabian; TOM-
BARI, Federico; KIM, Tae-Kyun; MATAS, Jiri; ROTHER, Carsten. BOP:
Benchmark for 6D Object Pose Estimation. CoRR. 2018, roč. abs/1808.08319.
Available from arXiv: 1808.08319.

24. HODAŇ, T.; BRACHMANN, E.; DROST, B.; MICHEL, F.; SUNDERMEYER,
M.; MATAS, J.; ROTHER, C. BOP Challenge 2019. 2019. https://bop.felk.
cvut.cz/media/bop_challenge_2019_results.pdf.

25. HINTERSTOISSER, S.; LEPETIT, V.; ILIC, S.; HOLZER, S.; BRADSKI,
G.; KONOLIGE, K.; NAVAB, N. Model Based Training, Detection and Pose
Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes. ACCV.
2012.

26. BRACHMANN, Eric; KRULL, Alexander; MICHEL, Frank; GUMHOLD, Ste-
fan; SHOTTON, Jamie; ROTHER, Carsten. Learning 6D object pose esti-
mation using 3D object coordinates. ECCV. 2014.

27. HODAŇ, Tomáš; HALUZA, Pavel; OBDRŽÁLEK, Štěpán; MATAS, Jiřı; LOU-
RAKIS, Manolis; ZABULIS, Xenophon. T-LESS: An RGB-D Dataset for 6D
Pose Estimation of Texture-less Objects. IEEE Winter Conference on Appli-
cations of Computer Vision (WACV). 2017.

28. DROST, Bertram; ULRICH, Markus; BERGMANN, Paul; HARTINGER, Phi-
lipp; STEGER, Carsten. Introducing MVTec ITODD – A dataset for 3D object
recognition in industry. ICCVW. 2017.

29. KASKMAN, Roman; ZAKHAROV, Sergey; SHUGUROV, Ivan; ILIC, Slobo-
dan. HomebrewedDB: RGB-D Dataset for 6D Pose Estimation of 3D Objects.
ICCVW. 2019.

30. XIANG, Yu; SCHMIDT, Tanner; NARAYANAN, Venkatraman; FOX, Dieter.
PoseCNN: A convolutional neural network for 6D object pose estimation in
cluttered scenes. RSS. 2018.

31. RENNIE, Colin; SHOME, Rahul; BEKRIS, Kostas E; DE SOUZA, Alberto F.
A Dataset for Improved RGBD-Based Object Detection and Pose Estimation
for Warehouse Pick-and-Place. RA-L. 2016.

32. DOUMANOGLOU, Andreas; KOUSKOURIDAS, Rigas; MALASSIOTIS, So-
tiris; KIM, Tae-Kyun. Recovering 6D Object Pose and Predicting Next-Best-
View in the Crowd. CVPR. 2016.

33. TEJANI, Alykhan; TANG, Danhang; KOUSKOURIDAS, Rigas; KIM, Tae-
Kyun. Latent-class hough forests for 3D object detection and pose estimation.
ECCV. 2014.

https://doi.org/10.1109/ETFA46521.2020.9211879
https://doi.org/10.1109/ETFA46521.2020.9211879
https://arxiv.org/abs/1808.08319
 https://bop.felk.cvut.cz/media/bop_challenge_2019_results.pdf
 https://bop.felk.cvut.cz/media/bop_challenge_2019_results.pdf

28 Bibliography

34. HODAŇ, T.; SUNDERMEYER, M. BOP Toolkit. 2020. https://github.
com/thodan/bop_toolkit.

35. LIU, Jinhui; ZOU, Zhikang; YE, Xiaoqing; TAN, Xiao; DING, Errui; XU, Feng;
YU, Xin. Leaping from 2D Detection to Efficient 6DoF Object Pose Estimation.
ECCVW. 2020.

36. CHEN, Liang-Chieh; ZHU, Yukun; PAPANDREOU, George; SCHROFF, Flo-
rian; ADAM, Hartwig. Encoder-Decoder with Atrous Separable Convolution
for Semantic Image Segmentation. CoRR. 2018, roč. abs/1802.02611. Available
from arXiv: 1802.02611.

37. BARATH, Daniel; MATAS, Jiri. Graph-Cut RANSAC. CoRR. 2017, roč. abs/1706.00984.
Available from arXiv: 1706.00984.

38. KNEIP, Laurent; SCARAMUZZA, Davide; SIEGWART, Roland. A novel pa-
rametrization of the perspective-three-point problem for a direct computation
of absolute camera position and orientation. In: CVPR 2011. 2011, pp. 2969–
2976. Available from doi: 10.1109/CVPR.2011.5995464.

39. LEPETIT, Vincent; MORENO-NOGUER, Francesc; FUA, Pascal. EPnP: An
accurate O(n) solution to the PnP problem. International Journal of Computer
Vision. 2009, roč. 81. Available from doi: 10.1007/s11263-008-0152-6.

40. MORÉ, JorgeJ. The Levenberg-Marquardt algorithm: Implementation and the-
ory. In: WATSON, G.A. (ed.). Numerical Analysis. Springer Berlin Heidelberg,
1978, sv. 630, pp. 105–116. Lecture Notes in Mathematics. isbn 978-3-540-
08538-6. Available from doi: 10.1007/BFb0067700.

41. CHUM, O.; MATAS, J. Matching with PROSAC - progressive sample con-
sensus. In: 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05). 2005, sv. 1, 220–226 vol. 1. Available from
doi: 10.1109/CVPR.2005.221.

42. HODAN, Tomas; SUNDERMEYER, Martin. BOP renderer [https://github.
com/thodan/bop_renderer]. GitHub, 2020.

43. BARATH, Daniel; MATAS, Jiri. Progressive-X: Efficient, Anytime, Multi-Model
Fitting Algorithm. CoRR. 2019, roč. abs/1906.02290. Available from arXiv:
1906.02290.

44. GUADARRAMA, Sergio. BOP renderer [https://github.com/tensorflow/
models/tree/master/research/slim]. GitHub, 2021.

45. WAGNER, Daniel; SCHMALSTIEG, Dieter. ARToolKitPlus for Pose Tracking
on Mobile Devices. In: 2007.

 https://github.com/thodan/bop_toolkit
 https://github.com/thodan/bop_toolkit
https://arxiv.org/abs/1802.02611
https://arxiv.org/abs/1706.00984
https://doi.org/10.1109/CVPR.2011.5995464
https://doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.1007/BFb0067700
https://doi.org/10.1109/CVPR.2005.221
https://github.com/thodan/bop_renderer
https://github.com/thodan/bop_renderer
https://arxiv.org/abs/1906.02290
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim

	List of Figures
	Introduction
	Non-learning-based approach
	Learning-based approaches
	Keypoint Approaches
	Holistic Approaches

	Note on depth-based approaches
	Challenges of 6D pose estimation
	6D localization or 6D detection
	The task
	Conclusions

	BOP Challenge
	Error functions
	Datasets
	BOP Toolkit

	EPOS
	How EPOS works
	Surface Fragments
	Prediction of 2D-3D Correspondences
	6D Pose Fitting

	Installation

	Experiments
	Creating synthetic training images
	The First experiment
	Improvements
	Increasing the resolution
	Rendering from a closer distance
	Other improvements

	Conclusions

	Conclusions
	Other solutions

	Bibliography

